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Abstract—Energy efficiency has been a major challenge for
exascale computing. Frequency scaling is a powerful technique
to achieve energy savings in modern heterogeneous systems, and
can be applied either at a coarse granularity, by application,
or at a fine granularity, by setting the frequency for each com-
putational kernel. The chosen granularity significantly impacts
the performance and energy consumption of applications due to
frequency-change overhead.

We propose a novel phase-based method that minimizes
the frequency-change overhead and improves performance and
energy efficiency on heterogeneous multi-GPU systems. Our
approach detects different phases through application profiling
and DAG analysis, and sets an optimal frequency for each
phase. Our methodology also considers MPI programs, where the
overhead can be hidden by overlapping frequency-change with
communication. Experimental results show up to 37% energy
saving and 1.87× speedup for various benchmarks on a single
GPU, and 68% energy saving and 3.63× speedup on two multi-
GPU applications.

Index Terms—DVFS, Frequency Scaling, Energy Efficiency,
Heterogeneous Computing, MPI, SYCL

I. INTRODUCTION

Energy efficient computing has become an important re-
search topic spanning various fields, including cloud [1],
[2] and edge computing [3]–[7], big data analytics [8]–[10],
fog [11], and in-memory computing [12]. Energy efficiency is
also a major challenge for exascale computing as large-scale
computing systems consume significant amounts of energy,
leading to increased costs for electricity and cooling [13]–
[15], contributing to higher carbon emissions [7], [16], [17].
A significant amount of research has focused on various
techniques to achieve better energy efficiency in large-scale
HPC systems [18], [19]. In particular, Dynamic Voltage and
Frequency Scaling (DVFS) and power capping are two core
techniques that have been proven to significantly reduce
energy consumption [20]–[23].

While frequency scaling has been successfully applied to
GPUs, its application to large-scale heterogeneous systems
presents several challenges. In many large-scale clusters, fre-
quency scaling is typically not available to users due to
potential technical issues. Energy management frameworks
such as GEOPM [24] and EAR [25] address this issue by
providing interfaces for energy monitoring and control. They
also integrate with existing job schedulers [26]. However,
relying solely on the job scheduler to implement energy

optimization techniques such as frequency scaling is a limiting
factor in achieving higher energy savings. In fact, in such
coarse-grained approaches, frequency scaling is applied at the
job level, meaning the entire application will run with the
same frequency.

Research has shown that different kernels can have diverse
energy characterization, resulting in different optimal frequen-
cies on GPU architectures [27], [28]. In fact, the fine-grained
approaches have shown higher energy savings compared to the
coarse-grained methods [29].

Unfortunately, changing the frequency is not free of cost.
We have experimentally calculated a time-to-change the fre-
quency of 0.33ms, 0.30ms, and 0.60ms, on AMD MI100,
Intel Max 1100, and NVIDIA V100S GPUs, respectively. This
means that, especially for large applications with multiple
tasks (computational kernels), changing the frequency for each
kernel execution can incur in unnecessary performance and
energy costs. While purely fine-grained approaches may incur
unnecessary overhead due to frequent frequency changes, it
is also possible to hide the latency of frequency changes by
overlapping them with communication. This can be achieved
in multi-GPU and multi-node applications using, for example,
asynchronous MPI communications.

This paper proposes a novel energy optimization method-
ology that applies frequency scaling to distributed hetero-
geneous systems. The proposed methodology overcomes the
limitations of existing coarse- and fine-grained approaches by
proposing an adaptive phase-based approach. Given a Direct
Acyclic Graph (DAG) representation of the computation, for
example, extracted from a SYCL task graph [30], along with
profiling information (i.e., time, energy, loops), our approach
automatically identifies energy phases and applies the optimal
frequency for each phase. Furthermore, by encoding MPI
information in the DAG, our method can further hide the
frequency-change latency through communication overlap in
multi-GPU and multi-node applications. Our methodology is
fundamentally abstracted from the underlying hardware, and
we demonstrate its portability to GPU systems from various
vendors (i.e., AMD, Intel, NVIDIA).
In summary, this paper makes the following contributions:

• A novel phase-based frequency scaling methodology for
heterogeneous systems based on the task DAG and pro-
filing of the application.



• An extension of phase-based frequency scaling for multi-
GPU and multi-node programs, which extends the task
DAG with information about the application’s MPI com-
munications, allowing for efficient overlap of the fre-
quency change overhead with the MPI communications.

• An experimental evaluation of five single-GPU
benchmarks on the AMD MI100, Intel Max 1100, and
NVIDIA V100S GPUs, along with an energy scalability
analysis of two real-world applications that scale across
4 Intel Max 1100 and up to 16 NVIDIA A30 GPUs.
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Fig. 1: Multi-objective characterization of matrix_mul (left)
and mersenne_twister (right) benchmarks.

II. BACKGROUND

A. Impact of Frequency Scaling

Nowadays, most GPU vendors provide an energy manage-
ment interface to enable power and energy profiling and core
frequency scaling. Examples include AMD’s ROCm SMI [31],
Intel’s Level Zero [32], and NVIDIA’s NVML [33]. Frequency
scaling, as an optimization strategy, can significantly reduce
the energy consumption of a task. While some hardware sup-
ports changing both core and memory frequency, most modern
data center GPUs only allow changing the core frequency.
Generally, energy efficiency comes at the cost of performance,
creating a multi-objective problem where we can investigate
different trade-offs.

Figure 1 shows the energy-speedup tradeoff for two kernels
on three different GPUs. Default configuration shows the
default GPU frequency set by the manufacturer. For NVIDIA
GPUs, this corresponds to the default core frequency with
AutoBoost disabled. For AMD, we determined this value by
comparing the performance level automatic with the manually
configured performance level. For Intel, the default frequency

is derived by evaluating and comparing different min-max core
frequency ranges. Min EDP is the frequency that minimizes
the Energy Delay Product (EDP) [34], while Min Energy
minimizes the energy consumption. Max Perf is the frequency
that maximizes performance. The Pareto front represents a
set of optimal solutions where no solution can be improved
without compromising another objective. In this context, the
Pareto front helps to identify trade-offs between performance
and energy consumption. The energy characterization presents
the multi-objective energy-performance distribution of dif-
ferent core-frequency settings, using the default frequency
as a baseline. We utilized two kernels from the SYCL-
Bench suite [35], matrix_mul (size: 5000 × 5000) and
mersenne_twister (size: 524288), and executed both ker-
nels across all supported frequencies on three different GPUs
(AMD MI100, Intel Max 1100, and NVIDIA V100S). For all
three GPUs, it is clear that scaling the frequency can lead to
improvements in at least one of the objectives: energy and
performance. For instance, in the case of the NVIDIA V100,
with Min EDP as the energy target, matrix_mul achieves
an 8% energy savings with a performance loss of about 1%,
while mersenne_twister achieves a 10% energy saving
and a 15% performance gain. The relationship between time
and energy depends on whether a kernel is memory or compute
bound. Compute-bound kernels benefit more from higher core
frequencies compared to memory-bound kernels.

B. Frequency Tuning Granularity

Based on the granularity of frequency tuning, there are two
common approaches used in related work. Coarse-grained
approaches [28], [36], [37] optimize the entire application by
setting a single frequency for the whole program. Although
this method can be easily implemented by job schedulers
and is effective for single-kernel applications, it becomes
inefficient for more complex applications with multiple kernel
executions. In fact, each kernel may have different energy
characterizations, requiring more fine-grained energy tuning,
such as setting a distinct frequency for each individual kernel.
In fine-grained approaches [29], [38], [39], instead, each
kernel in the program can be assigned an optimal frequency.
This approach covers the shortcomings of the coarse-grained
approach but typically requires the application to manage
frequency scaling.

III. MOTIVATION AND OVERVIEW

Our work is motivated by the need for more precise
frequency tuning and the desire to minimize the overhead
associated with frequency changes.

A. Frequency Scaling Overhead

This Section shows that changing the frequency imposes
an overhead, which can influence the effectiveness of energy-
tuning granularity. To show this, we designed a benchmark
called fsbench1 consisting of two kernel types with differ-
ent energy characteristics. The first kernel is a matrix_mul
with 1024 × 1024 elements and an optimal frequency of
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1110MHz, and the second is a median_filter with a
2048×2048 input size and an optimal frequency of 645MHz.
We first run the matrix_mul in a loop and then run the
median_filter in another loop right after the first loop.
The optimal frequency is selected based on the Min Energy
target in this case. We implement frequency scaling through
two methods: coarse-grained and fine-grained, utilizing ROCm
for AMD, LevelZero for Intel, and NVML for NVIDIA.

Figure 2 shows the time taken for each approach when we
repeat the fsbench1 benchmark with a loop count of 512
(512 invocations for the first kernel, followed by 512 for the
second kernel). The coarse-grained approach sets a frequency
once at the beginning of the program, whereas the fine-grained
approach sets the frequency 1024 times, once before each
kernel invocation.

If we do not consider the overhead of frequency changing
(the hatched area), the fine-grained technique will outperform
the coarse-grained method for all three GPUs, as it sets an op-
timal frequency for each kernel. However, considering the high
overhead of changing frequency (the hatched area), the fine-
grained approach becomes even slower for Intel and NVIDIA
compared to the coarse-grained method. For NVIDIA, which
experiences a higher overhead for frequency changes, each
frequency change with NVML takes almost 0.6ms, making
the fine-grained approach around 47% slower than coarse-
grained, overall.
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Fig. 2: Frequency scaling overhead for coarse- and fine-
grained approaches on fsbench1.

As we showed, changing the frequency with vendor-
provided tools incurs an overhead in the range of a fraction of a
millisecond. This is a problem: first, if we have an application
consisting of many lightweight kernels, each with a runtime
of microseconds or a fraction of a millisecond. In this case,
the fine-grained method would have a very high overhead,
and this overhead may become higher than the benefit we get
from frequency scaling. Second, when multiple consecutive
kernels in the application require the same optimal frequency,
changing the frequency for each individual kernel is inefficient.

B. Towards a Phase-based MPI-aware Approach

Considering the challenges of coarse- and fine-grained fre-
quency tuning methods, there is a need for a third approach
that addresses their shortcomings. This paper proposes a
phased-based approach that aims to minimize the frequency

changes in fine-grained approaches while maintaining their
energy efficiency.

The first key insight is that we can group tasks with similar
energy characteristics into a single phase. After identifying
the application phases, we will set an optimized frequency
for each phase. The second key insight is that it is possible
to hide the frequency change latency by overlapping it with
communication, similar to typical computation-communication
overlap optimization. This strategy is effective in multi-GPU
and multi-node applications, where a significant amount of
time is spent communicating between GPUs and nodes. We
have experimentally evaluated the optimization potential of
overlapping frequency changes while the GPUs are commu-
nicating.
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Fig. 3: Execution time and energy consumption of the
coarse-grained, fine-grained, and MPI-aware approach for
fsbench2 on 4 Intel Max 1100 GPUs.

To assess this, we designed a simple benchmark called
fsbench2 consisting of 2 kernels (with different energy
characteristics) and 2 MPI collective operations. We call
a kernel after each MPI collective operation in the fol-
lowing order: communication 1 (MPI_Bcast), kernel 1
(geometric_mean), communication 2 (MPI_Reduce),
kernel 2 (vector_addition). Intuitively, we will have 2
phases, assigning one phase to each kernel. Using the tech-
niques described later in Section V, we overlap the frequency
change overhead with MPI communications. Figure 3 shows
the time taken and energy consumption for the coarse-grained,
fine-grained (which is equivalent to a phase-based technique
with only 2 phases), and the MPI-overlapped (which is phase-
based with frequency change overhead overlapped with MPI
communications) across 4 GPUs. The results indicate that such
overlapping can significantly enhance performance, reducing
the time and energy consumption of the fine-grained approach
by 20% and 19%, respectively, compared to the same method
without overlapping.

C. Overview

q.parallel_for(k1);

MPI_Bcast();

q.parallel_for(k2);

q.parallel_for(k3);

q.parallel_for(k4);

q.parallel_for(k5);

MPI_Reduce();

q.parallel_for(k6);
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Phase 1
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Fig. 4: The proposed Phase-based approach overview.
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Figure 4 provides an overview of our phase-based ap-
proach. The application code comprises multiple computa-
tional kernels in the form of SYCL parallel_for and
MPI communications. First, we do a one-shot profiling of
the application to collect the required time and energy data
at the default frequency. During this step, we also extract
a DAG representing the dependencies between tasks (kernel
executions). In order to save time and avoid profiling the
application at all possible frequencies, we utilize an energy
prediction model [29] that predicts the speedup and normalized
energy across all frequencies. Once the DAG is built, we apply
our phase detection algorithm to identify the application’s
energy phases. Then, we set a desired frequency for each phase
to optimize energy and performance.

While the proposed methodology is based on SYCL and
MPI, it remains very generic and can be easily applied to
other programming models. Furthermore, the energy predic-
tion model can be replaced with any energy model capable
of predicting speedup and energy values. In Sections IV and
V, we present the theoretical framework for automatic phase
detection on single- and multi-device systems, separately.

IV. PHASE DETECTION ON SINGLE DEVICE

The benefits of employing a fine-grained approach may be
constrained by the frequency change overhead (see Fig. 2).
Our methodology for a single device, shown in Figure 5,
introduces a phase detection algorithm that aims to minimize
the number of frequency changes while preserving the energy
efficiency of the fine-grained approach. This approach begins
with the input of a SYCL code targeting, e.g., a single GPU.
❶ In the first step, after conducting a one-shot profiling
and predicting the energy using the model, we generate a
Directed Acyclic Graph (DAG) that represents task (kernel
execution) dependencies enriched with their time and energy
characteristics. ❷ In the second step, the phase detection
algorithm is applied to the DAG to detect the phases. This
is achieved by identifying groups of tasks in the application
that require a similar frequency. A frequency is then set for
all tasks within the identified phase.

Phase 
Detection 
Algorithm

Freq. 
change

Phase 2
Phase 1

Freq. 
change

v1

v2

v3

v4

Kernel time 
Kernel energy

v1

v2

v3

v4

q.parallel_for(k1);

q.wait();

q.parallel_for(k2);

q.parallel_for(k3);

q.wait(); 

q.parallel_for(k4);

Energy 
Model

2

One shot profiling with 
DAG extraction

1

Fig. 5: Single-device energy-aware DAG modeling.

In the rest of this section, we present the theoretical frame-
work used to identify the energy phases: the energy-aware
DAG model, the algorithm based on dynamic programming,
and the cost function.

A. Energy-aware DAG Model

We model the execution of a parallel program using a
computational DAG, where tasks are kernels executed on the

device, represented by graph vertices, and inter-task dependen-
cies are captured by graph edges. The DAG is extended with
energy and runtime information extracted from the one-shot
profiling step. Formally, we define an Energy-annotated DAG,
which is 4-tuple Ce = (V,E, t, e) of finite sets, such that:
V is the set of vertices representing the tasks of the profiled
application; E is the set of edges defining data dependencies
between tasks; t and e are the time and energy functions
defined as t : V × F → R and e : V × F → R, where
F is the set of available frequencies.

B. Phase Detection Algorithms

In order to have a comparison and choose the most effi-
cient algorithm for phase detection, we tested three different
algorithms: Dynamic programming (Dp), Greedy (Gr), and
Clustering (Cl). The first step in common between all the three
algorithms is to apply a topological ordering on Ce, producing
a sequence of tasks T = (v0, . . . , v|T |−1), where |T | = |V |. In
this work, we adopt the in_order queue property defined
by SYCL; that is, the kernels execute in the same order in
which they are submitted to the queue.

Dynamic programming (Dp). This approach is commonly
used in optimization problems, where the aim is to find
the best solution among many possible ones. Given T the
topological order of Ce, the dynamic programming solution
can be expressed using the following recurrence relation:

opt(i,j,k)=


Cost(i,j) if i=j∨k=0

min

{
min
i≤l<j

{opt(i,l,k−1)+opt(l+1,j,k−1)} otherwise

Cost(i,j)
(1)

where opt(i, j, k) represents the cost of the optimal parti-
tioning for tasks (vi, . . . , vj) with at most 2k − 1 splits,
and Cost(i, j) defines the cost of having (vi, . . . , vj) in the
same phase. In iteration k, the algorithm evaluates whether
to proceed with further subdivisions based on the optimal
partitions found in iteration k − 1. The terms opt(i, l, k − 1)
and opt(l+1, j, k−1) reflect the costs of splitting the interval
[i, j] at position l, where each subproblem has been solved in
iteration k − 1.

The time complexity of Dp is O(|T |4), as it requires four
nested loops on the number of tasks (|T |). However, as the
number of tasks grows, a time complexity of O(|T |4) can limit
the applicability of the phase-based approach in practice.

Greedy (Gr). The greedy approach (Gr) reduces the time
complexity to O(|T |2) while providing solutions that are not
necessarily optimal. The greedy algorithm examines each task
in the list, one by one, and decides whether to add it to the
current phase or the next phase. This decision is based on
the cost function Cost(i, j), as defined in Section IV-C. The
algorithm can be implemented with a loop iterating over tasks
in T , where in each iteration, the cost function is applied
with time complexity of O(|T |), resulting in an overall time
complexity of O(|T |2). The greedy approach constructs phases
by processing tasks in the order they appear in the list.
Although this approach allows for on-the-fly phase detection,
it can limit the potential to select optimal phases.
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Clustering (Cl). The clustering approach offers greater flex-
ibility by allowing tasks to be grouped in a more efficient way.
The key idea is to prioritize the phases that provide the highest
potential for energy savings and then determine, using the cost
function Cost(i, j), whether it is better to merge that phase
with the next one. Initially, each task composes one phase (or
cluster), creating a set of clusters that can be combined. At
each iteration, the algorithm chooses the cluster that yields
the maximum energy savings. Once a promising cluster is
identified, the cost function helps decide whether combining
it with the adjacent cluster is beneficial. If combining is
advantageous, the clusters are merged; otherwise, the cluster is
moved to the final list of phases. This process continues until
no further clusters can be merged. The algorithm iterates over
all tasks, applying the selection and cost function at every step,
resulting in the same computational complexity as the Greedy
algorithm. By prioritizing energy savings rather than following
a strict task order, the clustering approach has the potential to
detect more efficient phases.

Section VI provides an in-depth comparison of Gr and Cl
approaches against the optimal approach (Dp) on a wide range
of multi-kernel applications with different characteristics.

C. Cost Function

The phase detection algorithm leverages the cost function
Cost(i, j) to compute the cost of having a phase with tasks
(vi, . . . , vj). The cost associated with a phase considers four
factors: the number of times rk that the task vk is repeated
(in one or more nested loops); the frequency change over-
head ovhe; the execution time of each task t(vk, fopt); and
determining the optimal frequency fopt for the entire phase
by selecting the frequency that minimizes overall energy con-
sumption across all included tasks. Our methodology provides
a cost function that encapsulates all these aspects:

Cost(i, j) = ovhe +

j∑
k=i

rk · t(vk, fopt) (2)

Traditionally, loops in the source code are unrolled in the
task DAG. This approach significantly impacts the complexity
of algorithms operating on the DAG, leading to increased
computational overhead and memory usage. Real-world appli-
cations may contain several tasks repeated multiple times in-
side loops. For instance, CloverLeaf, the real-world application
used in this paper, encountered over 7000 kernel invocations.
To address this challenge, instead of expanding loops in the
task DAG, we opt to incorporate loop information as metadata
attached to the nodes during the profiling step. For this, we
count the number of kernel invocations for each kernel in
the profiling phase. This strategy allows us to retain loop
semantics without inflating the size of the DAG, providing
a more efficient solution for managing loop-heavy scenarios.
In order to handle loop information, for a task vi, we define
Li = {loops ℓ : vi occurs in ℓ}. The repetition factor repsi(ℓ)
of a task vi in a loop ℓ ∈ Li is the number of times the task
vi is executed during the loop ℓ. The number of times that the
task vk is repeated is defined as rk =

∏
ℓ∈Lk

repsk(ℓ).

The overhead ovhe considers two aspects: first, the overhead
associated with a single frequency change (either time or
energy, depending on the target metric), defined as ϵ, and
second, the number of times the frequency change must be
executed if it occurs within a loop (repsi). Formally, the
overhead of frequency changes for a phase composed of the
tasks (vi, . . . , vj) is defined as follows:

ovhe =
∏
ℓ∈Li

repsi(ℓ) · ϵ (3)

The optimal frequency fopt that minimizes the energy
consumption of the tasks (vi, . . . , vj) is computed as follows:

fopt = argmin
ft∈{fi,...,fj}

j∑
k=i

(e(vk, ft)− e(vk, fk)) · rk (4)

where {fi, . . . , fj} are the optimal frequencies that minimize
the energy, respectively, for tasks (vi, . . . , vj). The optimal
frequency selection for tasks (vi, . . . , vj) can be generalized
to support other target metrics such as Max Perf or Min EDP.

V. PHASE DETECTION ON MULTI-NODE

Thus far, we have demonstrated how to detect phases for
single-device applications. However, in multi-GPU and multi-
node applications, communication also needs to be taken into
account. MPI communications can introduce additional data
dependencies to the DAG. On the other hand, we have the
opportunity to hide the frequency change overhead within the
communication time.

Figure 6 shows the phase detection algorithm adapted for
MPI applications. ❶ Similar to single-device applications,
the first step is to generate a task DAG called Ce, enriched
with profiled information and energy predictions. ❷ The Ce

is further augmented with MPI-related information, specifi-
cally MPI synchronization nodes with annotated runtimes to
generate a Cmpi graph. ❸ The phase detection algorithm is
then applied to the DAG to detect phases. The algorithm
remains the same as that used for single-device applications
but operates on a Cmpi DAG rather than a Ce DAG.

The rest of the section describes how the Ce DAG and
the cost function, designed for the single-device context, are
extended to handle multi-node/device scenarios.

A. MPI-aware DAG Modeling

By incorporating MPI Sync nodes, the energy-aware DAG
is enhanced as an energy- and MPI-aware DAG, consider-
ing the communication times in multi-device systems. With
MPI blocking functions, the next scheduled task should wait
for data from other devices to proceed. The integration of
MPI Sync nodes represents these waiting times, which can
be used by the phase detection algorithm to perform MPI
communication simultaneously with the frequency change.
Formally, we extend our methodology with an MPI-aware
DAG defined as a 4-tuple Cmpi = (V ′, E′, t′, e′), of finite sets
such that: V ′ is the set of vertices representing the tasks of
the profiled application with the MPI Sync point; E′ is the set
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Fig. 6: MPI-aware phase detection algorithm.

of edges defining data dependencies between tasks, including
the dependencies introduced by MPI communications; t′ and
e′ are, respectively, the time and energy functions defined in
the same way as Ce DAG. For t′, the Cmpi DAG encapsulates
the time spent in the new MPI Sync node, while for e′, the
energy for the MPI Sync node is always 0 since we are only
interested in the communication time that can be exploited to
hide the frequency change.

B. MPI-aware Overhead

The cost function defined for Ce is extended to Cmpi

in order to consider, in the overhead, the time saved by
hiding the frequency change overhead during MPI blocking
communications. Formally, Eq. 3 is extended as follows:

ovhmpi =
∏
ℓ∈Li

repsi(ℓ) · (ϵ− MPI Sync) (5)

where the MPI Sync value for MPI Sync node represents the
time or energy spent in MPI blocking communication, which
is 0 for the nodes representing the tasks. When MPI Sync > ϵ,
the overhead (ovhmpi) is considered 0 since the cost of
frequency changes can be fully overlapped with the commu-
nication process.

C. MPI Collective Communications

In MPI blocking communications, all the involved processes
wait until the operation they are performing is completed be-
fore allowing the program to proceed. Synchronization occurs
internally within the blocking calls. Therefore, it is impossible
to overlap these communications with the calls to frequency
change APIs. In this case, we need to change these blocking
calls to non-blocking and then overlap them with the frequency
change function calls. Listing 1 illustrates an example of
such a case in which we replace the MPI_Bcast with
MPI_Ibcast and a corresponding MPI_Wait in Listing 2.

MPI_Bcast();
Freq_change();

q.parallel_for(kernel);

Listing 1: Frequency change
without overhead hiding.

MPI_Ibcast();
Freq_change();
MPI_Wait();
q.parallel_for(kernel);

Listing 2: Frequency change
with overhead hiding.

D. Stencil Communications

Stencil communications are common patterns in many MPI
applications, where each process communicates with its neigh-
bor processes in different dimensions. Here, we demonstrate

that our method for overlapping communication and frequency
change also applies to stencils. Listings 3 and 4 provide an
example of a one-dimensional stencil in which we overlap
communication with the call to change the device frequency.

MPI_Sendrecv();

Freq_change();

q.parallel_for(kernel);

Listing 3: Frequency change
example in stencils.

MPI_Irecv();
MPI_Isend();
Freq_change();
MPI_Waitall();
q.parallel_for(kernel);

Listing 4: Frequency change
overhead hiding in stencils.

The proposed overlapping technique can be applied to all
MPI communication operations, whether they are blocking
or non-blocking. If the communications are already non-
blocking, taking into account the data dependency between the
communication and the following kernel, we can overlap the
frequency modification time with the data transfer. The only
case where the current method is not applicable is when the
non-blocking MPI communications overlap with kernel execu-
tion. In this case, since the kernel is already executing during
the MPI communication, we cannot modify the frequency of
the GPU as it impacts the currently running kernel.

VI. PHASE-DETECTION ALGORITHMS EVALUATION

This section evaluates the Gr and Cl algorithms in compar-
ison to the optimal solution Dp. The algorithms are evaluated
by comparing the energy savings achieved by their solutions.
We compare the energy saved by Gr and Cl to the energy
savings of the optimal solution (Dp).

In order to have diverse scenarios and evaluate applications
with diverse characteristics, we selected twelve single-kernel
benchmarks from SYCL-Bench [35], each with different
characteristics and energy requirements. By combining these
kernels in various ways, we developed several multi-kernel test
applications (with up to 1000 kernel calls), each exhibiting
distinct characteristics, allowing us to test the algorithms in
a comprehensive manner. Considering that phase selection
algorithms must consider the kernels’ runtime, repetitions of
kernels in loops, and optimal frequency, we classified our
test applications into three distinct classes (R1, R2, R3)
to encompass a broad range of scenarios observed in real-
world applications.
R1: Multi-kernel applications where kernels have similar

runtimes but different energy requirements with optimal fre-
quencies ranging from 135MHz to 1597MHz. In this context,
we ensure that no single kernel dominates in execution time to
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provide insight into how well the algorithms perform in such
balanced scenarios.

R2: In contrast to the first class, some kernels have
significantly longer runtimes than others. This setup tests
how effectively the algorithms handle unbalanced work-
loads, where certain kernels disproportionately affect overall
energy consumption.

R3: The third class consists of test applications containing
different numbers of kernels repeated within loops. These
loops introduce complexity by adding repeated kernel invoca-
tions, potentially impacting the application’s energy character-
istics and runtime. This class assesses the ability of algorithms
to optimize energy savings in scenarios where the application
features more complex control flows and loop patterns.

In addition to these three classes, we define E1 and E2 as
the edge border cases. E1 consists of tasks where the optimal
frequency of task vi differs from vi+1, covering a scenario with
varying energy behaviors in consecutive tasks. Unlike for E2,
there is a drastic frequency change every four or eight tasks.

Table I summarizes the accuracy results of Gr and Cl in
percentage compared to the Dp approach, which is the optimal
solution, when minimizing MIN ENERGY or MIN EDP. The
reported numbers are the average accuracy across all tested
applications in each class. For both algorithms, in the R1-
R3 test cases, we save 90% to 100% of the energy saved
by the optimal algorithm. The clustering method consistently
achieves greater energy savings than the Greedy approach,
suggesting that an online Greedy solution that identifies phases
while scheduling tasks may overlook certain optimization
opportunities. Examining the edge cases, we observe that both
algorithms achieve 83% of the energy saved by the optimal
solution in the E1 scenario. In contrast, with E2 increasing
the similarity between consecutive tasks, the energy savings
come closer to the optimal solution.

In the rest of the paper, we employ the Clustering phase
detection algorithm, which offers high accuracy near the
optimal solution and has lower time complexity compared to
the Dynamic Programming algorithm.

TABLE I: Phase detection algorithms accuracy in percentage.

Greedy (Gr) Clustering (Cl)

App. Class MIN ENERGY MIN EDP MIN ENERGY MIN EDP

R1 95.1 100 96.5 100
R2 92.0 100 93.2 100
R3 97.3 100 98 100
E1 83 100 83 100
E2 94.1 100 99 100

VII. IMPLEMENTATION

The theoretical framework is translated into a concrete
implementation where energy profiling is tailored to device-
specific APIs, tasks are extracted from SYCL kernel execu-
tions, and MPI communications are specifically handled.

A. Profiling Time and Energy

The first step in identifying the application phases is to
analyze and profile the application and extract the required
features. The profiling information comprises timing data for
kernels, the number of times each kernel is invoked, MPI
communications, and energy characterization of the kernels.
For MPI profiling, we recorded the time spent on each
collective or point-to-point operation. The time and energy
profiling of each kernel is performed using the SYnergy API
and model [29] along with the SYCL events.

Our methodology involves one-shot profiling at the default
device frequency, which gathers all the required information.
By utilizing the model, which requires only the LLVM IR of
code as input, we can automatically predict time and energy
values for all supported frequencies for each device, thereby
eliminating the need to execute the application multiple times.
In our experiments, the profiling process involved running each
application five times at the default frequency to gather reliable
time and energy metrics. For all applications, including both
single- and multi-GPU applications, this step took approxi-
mately 7minutes.

Although the phase-based approach has been implemented
using SYCL, it is decoupled from the programming model,
energy prediction model, and energy/time profiler used. In fact,
energy profiling can be done with other available libraries, and
the model can be replaced with others that predict time and
energy values [27], [40]–[42] or can be entirely replaced by
a profiling step that runs the application using all available
frequencies on each device.

B. Task DAG Creation with SYCL

We implemented our DAG approach on top of SYCL.
By default, a SYCL queue executes kernel functions based
on dependency information. A SYCL program specifies the
data needed to execute a particular kernel, including access
modes and memory types. The SYCL runtime ensures that
kernels are executed in an order that ensures correctness
by building a DAG of tasks at runtime. Generally, a DAG
does not specify the order of execution for tasks but only
establishes partial ordering constraints represented as edges.
However, SYCL queues may operate in an in-order manner,
where the schedule follows the same order of submissions to
the queue. This limitation simplifies the analysis and is also
used by related work [29].

To efficiently generate the task DAG of the appli-
cations, we used the oneAPI graph SYCL extension
sycl_ext_oneapi_graph [30], which decouples com-
mand submission from command execution, allowing us to
extract task order and dependencies during one-shot profiling.
The profiling and modeling data also include the optimal
frequency for each kernel, timings, loop information, and MPI
communication times. The outcome of this step is a task DAG
that represents the data dependencies between kernels and
includes additional metadata to be used for phase detection.
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C. Phase Detection

After creating the task DAG, we execute the phase detection
algorithm described in Section IV. This algorithm takes the
DAG as input and detects the phases, specifying where we
need to set the frequency. To further clarify the phase detection
process, Table II shows the simplified structure of some of the
single-GPU applications used in our experiments. As shown,
each application consists of multiple kernels, some of which
are iterated inside the loops. On the right-hand side of the
table, the Min Energy indicates the frequency selected for
each kernel according to the Min Energy target, while Runtime
represents the ratio of that kernel’s runtime to the total runtime
of all kernels, considering that each kernel may be called
multiple times in the loops. The blue horizontal lines separate
the phases detected by our algorithm, and the Phase value is
the frequency chosen for all the kernels in that phase.

TABLE II: Single-GPU applications profile and detected
phases on NVIDIA V100S.

Code structure Phase
(MHz)

Min Energy
Freq. (MHz)

Runtime
(%)

ac
e

for n in num_iters:

calculateForce() P1
1080

982 21.05%
allenCahn() 1080 55.52%
boundCondPhi() 772 1.11%

thermalEquation() P2
202

202 16.06%
boundCondU() 630 1.11%
swapGrid() 532 5.15%

ao
p

generatePaths() P1
960

172 0.34%
prepareSvd() 960 96.09%

for n in num_iters:
P2
202

partialBeta() 202 2.38%
finalBeta() 150 0.05%
updateCashflow() 217 1.09%

partialSums() P3
157

157 0.04%
finalSum() 682 0.01%

m
ni

st

for n in num_iters:
for i in train:

fwPass() P1
240

240 32.77%
err() 225 2.30%

bwPass() P2
520

520 50.37%
labeling() 240 6.37%

for i in test: P3
225fwPass() 202 8.19%

When specifying the phases, our phase-detection algorithm
follows three primary objectives determined within its cost
function (Equation 2). First, according to the cost func-
tion, the algorithm groups the kernels that have the Min
Energy within a specific close range together and assigns
the frequency of the kernel with the longest runtime to
all kernels in that group: In ace: calculateForce(),
allenCahn(), and boundCondPhi() are grouped as
Phase1 (P1), and they got the frequency of 1080MHz which
is related to allenCahn(), having the highest runtime per-
centage among the others. Second, based on the cost function,
it aims to group the kernels invoked within a loop into the

same phase to prevent multiple frequency changes during the
loop execution. In aop: partialBeta(), finalBeta(),
and updateCashflow() are in a loop consecutively, and
despite having different energy requirements, they are grouped
into one phase. Third, it tries to unify phases with shorter
runtimes with either the preceding or subsequent phase, which
has a longer execution time. In mnist: kernels bwPass()
and labeling() are grouped in one phase despite having
different Min Energy frequencies. Given that the first kernel
takes 50.37% of the time and the second only 6.37%, after
assessing the cost of frequency change in the cost function,
the algorithm maintains the frequency for the second kernel
without alteration.

Our phase detection algorithm follows the same logic when
considering MPI communications. By assessing the cost of fre-
quency change and considering the MPI communication time,
it enables the overlap of communication with the overhead of
changing the frequency as in Section V.

D. Frequency Scaling with the SYnergy API

After detecting the phases, we need to set the desired
frequency for each phase. For this purpose, we used the
SYnergy API [29], which is designed to facilitate portable
frequency scaling on heterogeneous systems, encapsulating
vendor-specific libraries such as NVML, ROCm, and Level
Zero. Programmers can apply coarse-grained frequency scal-
ing by specifying the frequency for the entire application or
use a fine-grained approach to adjust the frequency of a spe-
cific kernel. Our phase-based approach uses the SYnergy API
to set the frequency for each phase.

VIII. EXPERIMENTAL EVALUATION

In this section, we present the results of the experiments
on single and multi-GPU/node. In all experiments, the fine-
grained and coarse-grained approaches refer to two of the
state-of-the-art methods, [29] and [43], respectively. The en-
ergy target for all experiments is Min Energy.

A. Experimental Setup

The experimental setup is summarized in Table III. We used
4 different machines: two single-node single-GPU systems
with NVIDIA and AMD GPUs, a single-node system featuring
4 Intel GPUs from the Intel® Tiber™ AI Cloud platform, and
a 4-node cluster equipped with 4 NVIDIA GPUs per node.

For the single-GPU experiments, we used five benchmarks
from the HeCBench SYCL benchmark suite [44]: ace, aop,
srad, metropolis, and mnist, and evaluated them with
the largest available input sizes. Multi-GPU experiments in-
clude two real-world applications: CloverLeaf [45], a com-
pressible Euler equations solver on a Cartesian grid, and
miniWeather [46], which is from the domain of weather-
like flows simulation. The applications are fed with the
maximum possible input sizes for each configuration (weak
scaling). We utilized the PowerCap interface [47] for host
energy measurements.
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TABLE III: Overview of the machines used in the experiments.

Machine Nodes GPUs per Node CPU SYCL Version MPI Version Energy Interface

A 1 1× NVIDIA V100S 2× Intel Xeon Gold 5218 Intel DPC++ 5 Feb 2024 NA NVML
B 1 1× AMD MI100 2× AMD EPYC 7313 Intel DPC++ 20 June 2023 NA ROCm
C 1 4× Intel Max 1100 2× Intel Xeon Platinum 8480 oneAPI DPC++ v2024.0.2 IntelMPI v2021.11.0 Level Zero
D 4 4× NVIDIA A30 2× Intel Xeon Gold 6338 oneAPI DPC++ v2024.0.2 IntelMPI v2021.11.0 NVML

TABLE IV: Aggregated absolute energy consumption values (in Joules) of host and device in single-node benchmarks running
on NVIDIA V100S (Mach. A), AMD MI100 (Mach. B), and Intel Max 1100 (Mach. C) GPUs.

srad ace mt.polis aop mnist

Approach A B C A B C A B C A B C A B C

Coarse-Grained 236.57 1155.40 313.84 8358.34 374.26 1260.34 144.04 - 245.94 218.93 436.68 232.94 41.89 - 142.29
Fine-Grained 738.50 1159.58 312.98 6883.43 375.35 924.57 124.69 - 249.51 266.56 430.32 250.30 1680.30 - 228.12
Phase-Based 182.10 955.81 278.63 5881.66 292.08 870.49 104.26 - 217.94 195.14 406.58 210.88 41.22 - 137.39

B. Single-GPU Performance

Figure 7 illustrates the performance of the fine-grained
and phase-based approaches compared to the coarse-grained
approach for single-GPU benchmarks. For each benchmark,
we fed the maximum possible input that each GPU could
handle.
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Fig. 7: Single-GPU benchmarks performance (higher is better).

In this figure, the phase-based method consistently outper-
forms the other two methods across all three GPUs, proving
that the proposed phase-based approach effectively reduces
the overhead associated with frequency changes in the fine-
grained approach. The largest gap between fine-grained and
phase-based performance across various GPUs is observed in
the NVIDIA GPU, where the phase-based method enhances
the performance of fine-grained for srad, aop, and mnist
by 4.3×, 3.6×, and 50.5×, while for Intel GPU, these are
1.13×, 1.26×, and 1.68×, respectively. This is mainly related
to the inefficiency of the fine-grained approach for applications
comprising several lightweight kernels invoked multiple times
within loops, such as mnist. In this case, the gain of changing
the frequency for each kernel is not enough to overcome
the overhead. This results in a significant slowdown of the
fine-grained method, particularly on NVIDIA systems, mainly
due to the high overhead of NVML compared to ROCm and
Level Zero when changing the frequency (as illustrated in Fig-
ure 2). Also, the runtimes of each kernel differ across various
GPUs. We have fed different input sizes to each GPU based
on its available memory, resulting in varying speedup ratios
when comparing the performance of different GPUs. Notably,

we were not able to run metropolis and mnist on AMD
due to the high memory requirements of these benchmarks.

C. Host and Device Energy Analysis

Figure 8 shows the corresponding energy consumption of
the three approaches on both the device and host while
running benchmarks on various GPUs. The corresponding
total absolute energy consumption values (host + device) are
provided in Table IV. The host energy refers to the energy
consumed by the CPU for the entire application.
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Fig. 8: Normalized energy consumption on the device (above)
and host (below) for single-GPU benchmarks (lower is better).

Similar to the performance in Figure 7, here in Figure 8,
a similar consistent trend is observed: on the device and
host, for all three GPUs, the phase-based approach exhibits
lower energy consumption compared to both coarse-grained
and fine-grained methods across all benchmarks. In particular,
for the device energy of aop and mnist, the fine-grained
approach consumes 1.12× and 1.75× more energy on Intel
and 1.39× and 39.25× more energy on NVIDIA compared
to the phase-based method. This increase is mainly attributed
to the high number of GPU frequency changes occurring
in these two benchmarks using the fine-grained approach.
Regarding host energy, the decline in energy consumption of
these benchmarks using the phase-based technique is linked
to the reduction in their runtime. Our approach shortens the
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overall execution time of the benchmarks, leading to a decrease
in both device and host (CPU) energy consumption.

D. Real-world MPI Applications

In this section, we compare our phase-based MPI-aware
approach with both coarse- and fine-grained methods on
multiple GPUs using two real-world MPI+SYCL applications:
CloverLeaf and miniWeather.

Figure 9 shows the speedup and normalized energy (relative
to the coarse-grained approach) for these two applications
on a single node equipped with four Intel GPUs (Mach.
C). The corresponding absolute energy consumption values
are in Table V. The Phase-Based represents the phase-based
approach without considering the MPI communications, while
the Phase-MPI represents the phase-based approach with
MPI communications overlapping with the frequency scaling
overhead. In Figure 9a, the phase-based approach consistently
outperforms both the coarse- and fine-grained methods for
the two applications. For CloverLeaf and miniWeather, it
shows better performance 1.61× and 1.66× than the fine-
grained approach, respectively. In addition, phase-MPI further
improves the performance of the phase-based by 1.10× and
1.12× for CloverLeaf and miniWeather, respectively. Overall,
the phase-MPI method improves the performance by 1.79×
and 1.86× for CloverLeaf and miniWeather compared to the
state-of-the-art fine-grained method.
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Fig. 9: The normalized performance and energy consumption
of CloverLeaf and miniWeather on 4 Intel Max 1100 GPUs.

TABLE V: Absolute energy consumption values (in kJ) for
CloverLeaf and miniWeather using different frequency scaling
methods on 4 Intel Max 1100 GPUs.

Coarse-
Grained

Fine-
Grained

Phase-
Based

Phase-
MPI

CloverLeaf 125.32 78.86 55.18 43.81
miniWeather 38.42 21.22 14.93 12.18

In Figure 9b, the phase-based approach is more energy
efficient than coarse- and fine-grained methods for the two
applications. It achieves an energy savings of 30% relative to
the fine-grained method for both CloverLeaf and miniWeather.
In phase-MPI, there is an additional improvement: compared
to the phase-based method, phase-MPI reduces energy con-
sumption by 21% for CloverLeaf and 19% for miniWeather.

Overall, phase-MPI reduces the energy consumption of the
state-of-the-art fine-grained approach by 45% and 43% for
CloverLeaf and miniWeather, respectively. As shown, our
proposed phase-based method improves both energy efficiency
and performance in real-world applications, each consisting
of multiple kernels with varying energy requirements and
execution times. Notably, miniWeather has 12 different kernel
types, with 1940 kernel calls in total, and CloverLeaf consists
of 37 different kernels with 7854 kernel invocations in total.

E. Energy Scalability

Figure 10 shows the energy scaling of miniWeather up
to 16 NVIDIA A30 GPUs using a weak scaling approach.
Both the performance and energy scaling results align with
our previous findings in this study. At any number of GPUs,
the coarse-grained is always slower than the fine-grained,
and they are both slower than our MPI-aware phase-based
approach. This holds also true for energy efficiency, with our
phase-based MPI-aware method proving to be more energy
efficient than the other two approaches. For example, with
16 GPUs, our method saves energy by 35% and achieves
a 1.45× higher performance compared to the state-of-the-art
fine-grained method.
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Fig. 10: Energy scalability of miniWeather on 2-, 4-, 8- and
16 GPUs using different frequency scaling methods.

IX. RELATED WORK

As CPU-GPU heterogeneous architectures are now broadly
used in exascale computing, they bring high computing capa-
bility but also consume significant power and energy. In fact,
power and energy consumption are considered primary issues
in large-scale HPC [48], [49]. Many researchers have proposed
approaches for tackling this issue [50]–[52].

DVFS-based technique DVFS is one of the widely used
techniques to enhance energy efficiency in HPC. Numerous
studies have investigated different DVFS-based mechanisms
from different perspectives. For example, some researchers
focused on analyzing the impact of DVFS on multi-objective
optimization using machine learning [53], [54]. Some re-
searchers focused on combining frequency scaling with other
energy-efficient techniques, such as power capping [38]. Fur-
thermore, DVFS techniques can be implemented on different
hardware and heterogeneous processors [28], [29], [54]–[57].
SYnergy [29] is another frequency scaling-based approach
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that targets heterogeneous hardware to achieve fine-grained
energy saving. Countdown [57] is a runtime library on CPUs,
which can automatically reduce power consumption by adding
DVFS capabilities into standard MPI libraries. Countdown
supports both fine and coarse granularity MPI to inject power
management calls. However, existing DVFS-based methods
do not consider MPI applications on CPU-GPU heteroge-
neous architecture.

Phase-aware DVFS technique From a granularity perspec-
tive, many researchers started to investigate frequency scaling
based on the phases rather than the fine- or coarse-grained
approaches [58]–[63]. Among them, Qiu et al. [62] presented
a three-phase DVFS algorithm that achieves higher energy sav-
ing by clustering task slacks via task graph unrolling. Booth et
al. [63] proposed a phase-based voltage and frequency scaling
that chooses the phases according to the Segments of code
with unique performance and power attributes using Hidden
Markov Models. However, existing phase-aware methods are
not implemented on modern heterogeneous architecture.

DVFS in MPI applications Energy efficiency with the
DVFS-based techniques has also been applied to distributed
memory context [57], [64]–[66]. Rountree et al. [67] used
linear programming to resolve the NP-complete problem of
when to change the frequency in an MPI program. Za-
mani et al. [68] aimed to apply DVFS to a specific application
on multiple GPUs. They used the algorithmic knowledge
from the application to predict slack times and do frequency
scaling on both CPU and GPUs. Endrei et al. [41] performed
frequency scaling and proposed a statistical model to find the
best tradeoff between performance and energy efficiency in
MPI applications. None of the related work, however, tried
to hide the overhead of frequency scaling, and none of them
provided a generic approach applicable to any application
type.

TABLE VI: Comparison against the state of the art.

Paper Granularity Frequency
Scaling Heterogeneity MPI-aware

Qiu et al. [62] Phase-based ✓ × ×
Booth et al. [63] Phase-based ✓ × ×
Countdown [57] Fine-&Coarse-

grained
✓ × ✓

Wang et al. [43] Coarse-grained ✓ × ×
SYnergy [29] Fine-grained ✓ ✓ ×
Our work Phase-based ✓ ✓ ✓

Table VI compares our work with the state of the art.
While the state-of-the-art coarse-grained approach [43] is
not well-tuned for multi-kernel and real-world applications,
SYnergy [29], which is the state-of-the-art heterogeneous
fine-grained approach, suffers from unnecessary frequency
changes for all the kernels in the application. To the best
of our knowledge, our work is the first to apply energy
optimization to MPI programs by overlapping communication
with frequency change.

X. CONCLUSION

In this paper, we highlighted the overhead of frequency
scaling across different GPUs and proposed a phase-based
frequency scaling technique for heterogeneous systems that
minimizes this overhead while preserving the energy effi-
ciency and performance of fine-grained frequency scaling
approaches. Our method identifies energy phases using the
task DAG enriched with profiling data. We developed a phase-
detection algorithm that identifies these phases and then sets
an optimal frequency for each phase. We proposed a novel
approach for MPI programs to further hide frequency change
overhead by overlapping it with MPI communications. Our
approach reduces overhead, increasing energy efficiency and
performance compared to state-of-the-art methods. It improves
real-world application performance by 1.45× and saves 35%
of energy on 16 GPUs compared to the state-of-the-art fine-
grained method.
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